

FTECHNOLOGY

Equation (1) presents the criterion for evaluating the contractors' D-B bids mathematically.

$$LCC^{X,R} = C_{INV}^X + LCC_{AV}^{X,R}$$
(1)

Proposal *R* is given an LCC added-value of zero, and the LCC added-value for proposal *X* is calculated using equation (2), with adjustments (if necessary) for differences between them in lifespan and associated LCM costs:

$$LCC_{AV}^{X,R} = \left(\left(EAC_{LCM}^X - EAC_{LCM}^R \right) \cdot \frac{1 - (1+r)^{-L}min}{r} \right) \mp \left(\frac{EAC_{AINV}^R}{(1+r)^{L}min} \cdot \frac{1 - (1+r)^{-|L_R - L_X|}}{r} \right)$$
(2)

The second part of equation (2) will have a positive sign if $L_X < L_R$ and vice versa.

Cost categories to be Included in LCCA of New Bridges

Paper V: Origin if the Idea

LCCA

Cost Equivalent of the Lifespan and LCM cost difference

Work-Zone User Cost

Integration and Evaluation of Aesthetic Aspects

Items considered for evaluation				Weight factors w _j	Average evaluation points p _j for Proposal no.			
				(out of 100)	1	2	3	
Structure simplicity and integration with the site				10	1	-1	2	
Structure honesty and visibility from the underpass traffic perspective				10	1	1	-2	
Bridge view from above				10	1	-1	2	
	Symmetry, order & rhythm			5	1	1	2	
Bridge form	Unity of design and harmony of spans			5	0	-1	2	
		Depth to span ratio		5	1	1	2	
as a whole	Proportion	Deck to parapet depth ratio		2	0	0	1	
		Span to parapet depth ratio		2	0	0	1	
	Superstructur e	Parape	t design & shape	5	1	0	2	
		Girder	Elevation	5	0	0	2	
			Cross-section	4	-1	-2	2	
	Substructure	Headst	ock and pier combination	5	0	-2	2	
		Piers	Longitudinal pier spacing	4	-1	-1	-2	
			Pier cross-section	4	1	-1	-2	
Structural-			Pier short elevation	2	0	0	-2	
members			Pier long elevation	2	0	0	-2	
	Abutments	Visible size		4	1	1	2	
		Placement		2	1	1	1	
		Shape		4	1	1	2	
	Details	Joints and connections Barriers & railings		3	0	0	1	
				3	1	1	1	
		Lighting, color & embellishments		4	1	1	2	
Aesthetic coefficient: k ^X _{AES}					-0.29	0.07	-0.50	
Willingness-to-pay-extra for the bridge's aesthetic appeal: WTPE _{ACE} , (Million SEK)					3.66			
С	Cost equivalent of the aesthetic merit: CEAM ^X , (Million SEK)					0.26	-1.83	
		Ae	sthetic rank		2nd	3rd	1st	

LCA Results

OF TECHNOLOGY

Monetary weighting of the LCA Results

			Proposal 1		Propo	osal 2	Proposal 3			
Impact category	Unit	Monetary weighting factor (SEK/Unit)	Total impact	Monetary impact cost (kSEK)	Total impact	Monetary impact cost (kSEK)	Total impact	Monetar y impact cost (kSEK)		
GWP	kg CO2 eq	2.85	1.9E+06	5,422	1.6E+06	4,548	1.0E+06	2,949		
ODP	kg CFC-11 eq		1.2E-01		8.2E-02		1.3E-01			
НТР	kg 1,4-DB eq	2.81	3.3E+05	934	3.6E+05	1,026	1.9E+05	525		
POFP	kg NMVOC	15.97	6.6E+03	106	5.2E+03	83	4.3E+03	68		
PMFP	kg PM10 eq	273	3.5E+03	960	3.5E+03	960	2.7E+03	736		
IRP	kg U235 eq		7.1E+04		7.0E+04		1.3E+05			
ТАР	kg SO2 eq	30	5.3E+03	158	4.5E+03	135	5.0E+03	150		
FEP	kg P eq	670	4.5E+01	30	5.7E+01	38	3.5E+01	23		
MEP	kg N eq	90	2.1E+02	19	1.6E+02	14	1.5E+02	13		
TETP	kg 1,4-DB eq		1.4E+02		1.3E+02		7.9E+01			
FETP	kg 1,4-DB eq		5.3E+02		4.5E+02		3.4E+02			
МЕТР	kg 1,4-DB eq	12	1.3E+03	16	1.5E+03	18	1.1E+03	13		
Total monetary impact cost (kSEK)			7,645		6,821		4,478			
Total monetary impact cost/year, (kSEK)			76		68		56			
Total monetary impact cost for 80 years (kSEK)			6,116		5,457		4,478			
Environmental rank			3rd		2nd		1st			
$k_{\rm EI}^{\rm X}$			100%		89%		73%			
WTEP _{EI} , (kSEK)			2,744							
$CEEI^{X,R}$ (kSEK)			2,744		2,4	48	2,009			

Relation between the INV cost of the repair strategy and the minimum required residual service life extension

The Swedish Bridge Stock

	Bridge Function Type					Pridge Total	Bridge Total	
	Roadway	Railway	Pedestrian & Bicycle	Other	Total No. Of Bridges	Bridge Total Area (m ²)	Bridge Total Length (m)	
BaTMan's Bridges	23,848	4,411	1,619	251	30,129	7,644,208	668,381	
Trafikverket's Bridges in BaTMan	20,050	3,179	207	14	23,450	5,858,570	528,905	

The Average Real INV cost/m²

ROYAL INSTITUTE OF TECHNOLOGY

Based on cost data for 2,508 bridges constructed between 1980 and 2011.

The real inflation rate of the INV cost/m²

BSMs' LCPs based on Real repair Records

Based on 288 Replacement actions performed between 1980 and 2010

Appendix B introduces rough life-cycle plans (LCPs) for the various bridge structural members (BSMs) of Swedish bridges.

OYAL INSTITUT

Procurement within Public Agencies

Public Procurement Act, based on EU Procurement Directives.

Enquiry documentation is the collective documentation that:

- Describes what is to be procured,
- What requirements are placed on the tenderer
- and the subject of the procurement,
- as well as how the tenders will be evaluated.

TECHNOLOGY

The Concept of the Lowest LCC Bid

- The lowest LCC bid should be used as the contract award criterion under D-Bs, instead of the lowest INV bid
- Two inappropriate ways to apply the lowest LCC bid award criterion.
 - 1. Request contractors to supplement bids with life-cycle plans (LCPs) and LCM cost calculations:
 - A. Some contractors may underestimate LCM costs of their designs because they will not usually be obligated in the long run.
 - B. Most contractors are not familiar with actual LCM costs of designs, since they are usually incurred by the bridge procurers.
 - C. The LCP and LCM costs for a proposal prepared by a contractor could be strongly questioned by other contractors.
 - 2. The other inappropriate way is for the agency to analyze LCCs of contractors' bids and use the results to select a contractor,
 - A. The results may easily be adjusted to provide a desired answer and
 - B. Different analysts might generate different results.

