

Bridge Life Cycle Cost Optimization Analysis, Evaluation & Implementation

Mohammed Abed El-Fattah Safi Supervisors: Prof. Håkan Sundquist Dr. Hans-Åke Mattsson

Master Thesis Presentation, Closing Seminar 29 May 2009

Thesis Idea/Starting Points

- In Fact, Implementation of a bridge design proposal decision is generally require that several alternatives to be considered. Many factors contribute to an agency's decision to select a particular option.
 - Although initial project costs may dominate this decision. Initial agency costs, however, tell only part of the story.
 - Some projects have exceeded all cost estimates but still it has been possible to fulfill them with success.

Bridges are required to provide service for many years. Thus the investment decision should consider not only the initial activity, but also all future activities that will be required to keep that bridge in service condition.

Research Questions/Objective

- > What is the optimum bridge design proposal?
- What are the factors that affect the decision making?
- > How can we achieve and fulfill this target?
- How can we formalize & facilitate the bridge LCC optimization process?

Each involving parties has his own considerations and interests

Individual Answers

- Bridge Owner/Agency: The best bridge design is the one which meets project performance requirements at the lowest costs
- Bridge Users: The best bridge is the one which provide the highest level of traffic flow and safety conditions
- Environmentalists: Which gave the minimum environmental distortion
 - Social viewers & Neighbors: The most beautiful/quiet
 - <u>The Optimum Bridge:</u> The one which fulfill all involving parties requirements & Interests with the lowest <u>Life Cycle Costs</u>

Thesis Structure

Introduction

- General Bridge LCCA Principle Feedback
- Agency Cost
 Basic methodology
 Feedback

User Cost

Basic methodology Developed computer program Demonstration Example Aesthetical & Cultural Value General Basic methodology <u>Developed computer program</u> Demonstration Example

Environmental Impact

General Basic methodology Demonstration Example

Conclusion

Discussion Future research

Unique Integrated bridge LCCA system

Bridge life cycle cost components:-

Bridge LCC Formalization ?!

System Formalization

$LCC = C_{AG} + C_{USER} + C_{RACV} + C_{REI}$

Where:-

- o C_{AG} Is the corresponding Agency cost.
- o C_{USER} Is the corresponding User cost.
- o C_{RACV} Is the corresponding *Relative Aesthetical and Cultural Value cost*.
- o C_{REI} Is the corresponding *Relative Environmental Impact cost*.

Where:-

$$C_{RACV} = k_{AES}C_{AG}$$

 k_{AES} Is the aesthetical and cultural coefficient. Range from +0,30 To -0,30

$$C_{REI} = k_{EI}C_{AG}$$

 k_{EI} Is the environmental impact coefficient. Range from 0,0 To +0,20

1- Agency Cost

- Agency costs are all costs incurred by the project's owner or agent over the whole bridge life or study period.
 - Agency costs are relatively easy to estimate since historical data on similar projects reveal these costs.

Agency/Elemental Cost

- Elemental costs include all bridge components life-cycle cost categories which, in KTH we agreed to classify them ascending by there occurrence during the bridge life cycle, with these proposed titles as follow:
 - Investment Cost (Purchasing, Construction, & Installation)
 - Operation & Maintenance Cost
 - Inspection Cost
 - Repair/Rehabilitation & Replacement Cost
 - End of life Management Cost (Demolition and Landscaping)

Historical Agency Data

Operation & Maintenance Cost

1	Operation & Maintenance activities										
	The Action Name	Recommended	Avera	ge Requ	ired Unit Duration	Average Cost					
	The Action Name	Intervals(Year)	Value	Unit	From	% From The Agency Cost					
	Cleaning the bridge of salt	1	0.05	hr/m ²	Bridge Area						
	Cleaning & rodding of the drainage system	1	0.2	hr/m	Bridge Length						
	Maintenance of parapets,gardrail& railings	1	0.5	hr/m	Bridge Length	05					
	Maintenance of surface finish and laning	1	0.5	hr/m ²	Bridge Area	cu,					
	Dehumidification, electricity and maintenance	1	0.5	hr/m ²	Bridge Area						
	Protection against scour	1	0.2	hr/m ²	Bridge Area						
	Improvement of painting	10	2	hr/m ²	Bridge Area						

Inspection Cost

Inspections activities										
The Action Name	Recommended	Avera	ge Requi	ired Unit Duration	Average Cost					
The Action Name	Intervals(Year)	Value	Unit	From	% From The Agency Cost					
eneral inspection	1	0.05	hr/m ²	Bridge Area	0,15					
lajor inspection	3	0.1	hr/m ²	Bridge Area	(Concrete Structures)					
pecial inspection	6	0.2	hr/m ²	Bridge Area	(Steel Structures)					

End of life Management Cost (Demolition and Landscaping)

End of life Management (Demolition and Landscaping) activities									
The Action Name	Recommended	Avera	ge Requ	ired Unit Duration	Average Cost				
The Action Name	Intervals(Year)	Value	Unit	From	% From The Agency Cost				
Prestressed concrete bridges	100	0.025	day/m ²	Bridge Area	9				
Convential reinforced concrete bridges	80	0.04	day/m ²	Bridge Area	10				
Steel Structures	70	0.02	day/m ²	Bridge Area	8				
Timber Bridges	50	0.015	day/m ²	Bridge Area	6				

Bridge Breakdown Components

Component / Activities Type / Inch		Type / Include	C	Component / Activities	Type / Include
		Foundation slab			Bearing and Hinge
		Foundation plinth			Expansion joint
		Rock filled box timber caisson			Parapet
		Caisson			Railing
		Timber grillage		Dille contract	Guardrail
1	roundation	Pile	l °	Bridge equipment	Insulation, water proofing
		Backfill			Drainage system
		Erosion protection			Lightening, Electrical work
		Sheet pile wall			and Accessories
		Rock anchor bolt			
		Embankment, embankment			Pavement (asphalt etc.)
	Sland and Embaulturent	end, backfill	7	Surfa an Iorrana	Insulation, water proofing
2	Slope and Empankment	Soil reinforcement and	11	Surface layers	Epoxy sealing
		slope protection			Others
	Substructure	Lower front wall			Excavation soil
		Bridge seat			Excavation rock
		Upper front wall			Soil filling
		Pier		F	Others
2		Footing slab for pier	l °	Earthworks	
		Counterfort			
		Wing wall			
		Supporting wall			
		Slab and deck			Scaffolding
		Beam			Temporary constructions
		Truss			Bridge construction
1	Superstructure	Arch, Vault	9	Construction	Transportation of workers
		Arch spandrel wall			Other activities
		Cable system			
		Pipe, Culvert			
		Secondary load-bearing beam,			Denne this a
		cross beam			Demonation
5	Secondary load-bearing	Secondary load-bearing truss,	10	End of Life Management	Landscaping
	structure	Wind bracing		Ling of Line Islandgement	Darweedbild
		Edge beam			Waste management
					(incl. recycling and recovery)

2- User Costs

Definition:

Costs incurred by users of the bridge as a result of deteriorated conditions on the bridge, resulting from construction, maintenance, inspection, rehabilitation, and demolition activities, leading to an increase in the vehicles trip time which is translated into user delay costs, additional vehicle operating costs and increase risk and accident costs.

User Costs/Formalization

$$T = T_{wz} - T_o$$
, $T_o = \frac{L}{v_o}$, $T_{wz} = ???$

o The duration travel delay time in case of work zone (T) is strongly associated with the traffic flow condition, the hourly traffic distribution,

Bridge User Cost = TDC + VOC + AC + FC

Traffic Delay Cost (TDC)

$$TDC = \sum_{t=0}^{T_E} T \times ADT_t \times N_t \times (\mathcal{T}_T \mathcal{W}_T + (1 - \mathcal{T}_T) \mathcal{W}_P) \frac{1}{(1 + r)^t}$$

Vehicle Operation Cost (VOC)

$$VOC = \sum_{t=0}^{T_E} T \times ADT_t \times N_t \times (\mathcal{F}_T O_T + (1 - \mathcal{F}_T) O_P) \frac{1}{(1 + r)^t}$$

Accident Cost (AC)

$$AC = \sum_{t=0}^{T_E} ADT_t \times N_t \times (A_n - A_a) \times \left[(C_F \times P_F) + (C_I \times P_I) \right] \frac{1}{(1+r)^t}$$

Logical Assumed Values

$\bullet \quad \text{The value of } w$

- The value of one hour of travel time per vehicle should be equal to the average hourly wage for average employee in the considered country.
- o The recommended values according to Sweden 2009 are:
 - > \$ 14,0 /hr

for passenger cars.

> \$ 28,0/hr

for other vehicles.

The value of O

**

- o The average hourly vehicle operating cost, include fuel, engine oil, lubrication, maintenance, and depreciation.
- o The recommended values according to Sweden 2009 are:
 - > \$ 9,5 /hr for passenger cars.
 - > \$21,5/hr for other vehicles.
 - The Value of average cost per accident
 - o The recommended values according to Sweden (SRA) 2009 are:
 - > \$1,500,000 for fatal deaths crush
 - > \$160,000 for serious injury crush

User Costs/Traffic Flow

Traffic Flow Conditions

Unrestricted flow conditions:

Where the traffic volume is below the work zone capacity

Forced flow conditions:

Where the traffic volume exceeds the work zone capacity "Queue" situation

Circuity flow condition:

where traffic is forced to utilize a detour

Hour		Distribution F	Ho	ur	Distribution Factor(%ADT)		
From	To	Inter <i>s</i> tate	Other	From	То	Inter <i>s</i> tate	Other
0	1	1.70%	0.90%	12	13	5.70%	5.70%
1	2	1.40%	0.50%	13	14	5.90%	5.90%
2	3	1.30%	0.50%	14	15	6.30%	6.60%
3	3 4 1.30% 0.50%		15	16	6.90%	7.70%	
4	5	1.40%	0.90%	16	17	7.20%	8.00%
5	6	2.10%	2.30%	17	18	6.60%	7.40%
6	7	3.70%	4.90%	18	19	5.30%	5.50%
7	8	4.90%	6.20%	19	20	4.40%	4.30%
8	9	4.90%	5.50%	20	21	3.80%	3.60%
9	10	5.20%	5.30%	21	22	3.40%	3.00%
10	11	5.50%	5.40%	22	23	2.90%	2.30%
11 12		5.80%	5.60%	23	24	2.40%	1.50%

Traffic Flow Conditions/Bridge Capacity

Unrestricted flow conditions:

Design Speed(km/h)	30	40	50	60	70	80	90	100	110	120
$L_1(m)$	23.656	35.319	45.246	55.305	65.767	85.192	96.223	108.557	134.759	161.753
$L_0(m)$	200.000	200.000	200.000	200.000	200.000	200.000	200.000	200.000	200.000	200.000
L_(<i>m</i>)	0.424	1.019	1.358	1.698	2.037	3.310	3.819	4.329	6.111	8.063
$T_1(ht)$	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
$T_2(\hbar t)$	0.008	0.007	0.005	0.004	0.003	0.003	0.003	0.002	0.002	0.002
T⊴(<i>ht</i>)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
The Affected Bridge length L(<i>m</i>)	224.081	236.337	246.604	257.003	267.804	288.502	300.043	312.886	340.870	369.816
The Travel during work zone T _{wα} (<i>hr</i>)	0.009	0.008	0.006	0.005	0.004	0.004	0.004	0.004	0.004	0.004
The Normal Travel time T _o (<i>ከነ</i>)	0.007	0.006	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.003
The Travel Time Delay T (<i>hr</i>)	0.001	0.002	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.001
The Travel Time Delay T (<i>Sec</i> .)	4.839	6.125	3.706	2.492	1.797	2.247	1.751	1.410	1.688	1.914

Traffic Flow Conditions/Bridge Capacity

Forced flow conditions:

Forced Flow Condition										
Design Speed V₀(km/h)	30.00	40.00	50.00	60.00	70.00	80.00	90.00	100.00	110.00	120.00
L ₁ (<i>m</i>)	30.03	44.99	63.90	86.23	113.17	142.67	172.75	210.25	252.83	293.31
$L_q(m)$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
L ₀ (<i>m</i>)	200.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00
L ₂ (m)	0.01	0.01	0.03	0.04	0.06	0.07	0.09	0.12	0.14	0.15
L ₃ (<i>m</i>)	199.99	199.99	199.97	199.96	199.94	199.93	199.91	199.88	199.86	199.85
$L_4(m)$	0.43	1.04	1.37	1.71	2.05	3.35	3.86	4.37	6.18	8.17
$T_1(hr)$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$T_q(hr)$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$T_2(hr)$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T ₃ (<i>hr</i>)	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T ₄ (<i>hr</i>)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
The Affected Bridge length L(m)	230.46	246.02	265.28	287.94	315.22	346.02	376.61	414.61	459.01	501.48
The Travel during work zone $T_{\rm wz}(\hbar r)$	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
The Normal Travel time T ₀ (<i>hr</i>)	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
The Travel Time Delay T (hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
The Travel Time Delay T (Sec.)	7.93	10.20	9.57	10.16	11.34	12.93	14.16	15.71	17.22	18.50

17

Activities affect the Traffic/Computer Application

Work Activities That affect or disturb the Traffic								
The Action Name	Recommended	Avera	ige Requ	ired Unit Duration	Affecte	d Traffic	Limitations &	
	Intervals(<i>Year</i>)	Value	Unit	From	Over	Under	Comments	
Investm	ent (Purchasing	, Const	ruction,8	& Installation)				
Prefabricated Prestressed concrete bridges	100	0.12	day/m ²	The Bridge Area	Yes	Yes		
Convential reinforced concrete bridges	80	0.15	day/m ²	The Bridge Area	Yes	Yes	Traffic must detour	
Steel Structures	70	0.1	day/m ²	The Bridge Area	Yes	Yes	(Bridge Full Closer)	
Timber Bridges	50	0.12	day/m ²	The Bridge Area	Yes	Yes		
	Operation & Ma	intenar	nce activ	rities				
Cleaning the bridge of salt	1	0.05	hr/m ²	Bridge Area	Yes	No		
Maintenance of parapets,gardrail& railings	1	0.15	hr/m	Bridge Length	Yes	No		
Maintenance of surface finish and laning	1	0.1	hr/m ²	Bridge Area	Yes	No		
Repair, Rehabilitations & Replacement activities								
Deck repair & maintenance	12	0.2	hr/m ²	Bridge Area	Yes	No		
Deck overlay & resurfacing	26	0.4	hr/m	Bridge Length	Yes	No		
Deck replacement	44	1	hr/m ²	Bridge Area	Yes	No		
Expansion joints repair	4	2	hr/m	Bridge Width	Yes	No		
Expansion joints replacement	12	3	hr/m	Bridge Width	Yes	No		
Bridge seat & bearings replacement	40	0.04	hr/m ²	Bridge Area	Yes	No		
Gradrail,railings, parapets & fittings replacement	20	2	hr/m	Bridge Length	Yes	No		
Edge beam impregnation & repair	25	0.5	hr/m	Bridge Length	Yes	No	one closed lane	
Edge beam replacements	50	1.5	hr/m	Bridge Length	Yes	No	one closed lane	
Superstructure replacements	50	2	hr/m ²	Bridge Area	Yes	No		
Substructure replacement	50	0.5	hr/m ²	Bridge Area	Yes	No		
Painting of steel structure, whole bridge	25	0.2	hr/m ²	Bridge Area	No	Yes		
End of life Mar	nagement (Dem	olition	and Lan	dscaping) activitie	s			
Prefabricated Prestressed concrete bridges	100	0.12	day/m ²	The Bridge Area	Yes	Yes		
Convential reinforced concrete bridges	80	0.15	day/m ²	The Bridge Area	Yes	Yes	Traffic must detour	
Steel Structures	70	0.1	day/m ²	The Bridge Area	Yes	Yes	(Bridge Full Closer)	
Timber Bridges	50	0.12	day/m ²	The Bridge Area	Yes	Yes		

Developed Computer program

3- Bridge Aesthetical & Cultural Value

- Bridges are often seen more or less as sculptures and icons which the citizens may relate with the soul of the city.
- Some projects have exceeded all cost estimates but still it has been possible to fulfill them with success
- One of the main aims of bridge projects is to preserve the harmony of the scenery & the surrounding context.
 - So, absolutely there is a hidden value behind the external appearance and the beauty shape of the bridge
 - Firstly, When & How we can decide that the bridge beauty is importance & needed or not !!
 - To answer this question, Two things have to be specified first:
 - ✓ Stander Grading System
 - $\checkmark \quad \text{According to what we can classify the bridge site}$

Bridge Site Classification

A four-grade system is used for evaluation of a bridge site:

Class	Explanation	acceptable additional costs				
Class I	Very demanding	030				
Class II	Demanding	020				
Class III	Remarkable	010				
Class IV	Ordinary	0				

Evaluated items :

- Location of the bridge site
- Viewpoints of local people & Value of the landscape
- Cultural value of the surroundings
- Aesthetical demands of the bridge

Cost & Aesthetics Can be Complementary

- Bridges of aesthetic merit need not be much expensive than ugly bridges.
- For example, the shape of a parapet, abutment, pier or the design symmetry might have a negligible impact on costs but a significant improvement visually.
- This is not to say that the cheapest bridge is necessarily the ugliest bridge.

'It is unwise to pay too much. But it is worse to pay too little'

For aesthetics to be successful, it must first be consider as an integral part of the design. <u>Aesthetics is not something that can be added on at the end</u>

Aesthetical Design Guidelines

 Intended to sett down considerations and principles, which will help, eliminate the worst aspects of bridge design and encourage the best.

Unique Evaluation System

Remember what we agreed in the beginning for LCC:

 $LCC = C_{AG} + C_{USER} + C_{RACV} + C_{REI}$ $C_{RACV} = k_{AES}C_{AG}$

 $k_{\rm AES}$ Is the aesthetical and cultural coefficient. Range from +0,30 To -0,30

The system is based on the idea that points given to different things according to a given scheme and the opinion of the evaluators. The *number n of things* to be considered can be freely chosen and each thing can have different *weight wi* of importance.

The evaluator rule is to give a numerical values or *points pi* on a chosen scale to each thing *i* that is considered.

Developed Computer Program/Example

$$k_{AES} = -a \frac{\sum_{i=1}^{n} w_i p_i}{\sum_{i=1}^{n} w_i \max p_i \max}$$

The scale for *points pi* and the corresponding individual values should be chosen so that an evaluator has enough possibilities to distinguish the different designs or bridges

Category	Explanation
-2	Poor
-1	Modest
0	Medium
1	Good
2	Excellent

• For the non-dimensional *scaling factor* numerical value of a = 0.30 is recommended as it used also in the *Finnish Road Administration (Finnra)*.

Example/(Motala Bay, Sweden, 2009)

Bridge design competition was arranged.

- > 7 Architectural firms were invited to participate.
- > 9 Different proposals were sent in to the SNRA.

Example/(Motala Bay, Sweden, 2009)

Example/(Motala Bay, Sweden, 2009)

Developed Computer Program/Application

Comp. Application

4-Bridge Environmental Impact

Environmental Impact Include:

- ✓ Material resource consumption (The Usage of un renewable materials)
- ✓ Air and water pollutant emissions
- ✓ Solid waste generation
- ✓ Energy use
- ✓ Fuel consumption
- ✓ Emissions from the traffic

Life Cycle Assessment(LCA):

Is an analytical technique for evaluating the environmental consequences attributable to the life cycle of a product or a service.

Bridge Environmental Impact Evaluation Steps

- Tracking the bridge Life cycle phases, estimate the amount of used materials, fuel, energy in the each life cycle stage.
- Provide the computer program LCA which, is developed in the ETSI project stage 2 by *Johanne Hammervold* with this amount of materials, directly you can got the amount of emissions

The used Materials
The Emissions amounts

Using a stander weighting factors for each emission we can assess the total impact and when so, evaluate K_{EI}

Environmental Impact Computer Application

Remember again what we agreed in the beginning for LCC: $LCC = C_{AG} + C_{USER} + C_{RACV} + C_{REI}$ $C_{REI} = k_{EI}C_{AG}$

 k_{EI} Is the environmental impact coefficient. Range from 0,0 To +0,20 ***** For more information, See ETSI project Stage 2 31

Conclusion

Conclusion:-

- This research demonstrates a unique LCCA system for evaluating the sustainability of bridges, integrating all life cycle aspects like agency cost, user cost, aesthetical and cultural value, and the environmental impact.
- The application of this integrated model to bridge design highlighted the critical importance of using the life cycle modeling in order to enhance the sustainability the bridges.

Acknowledgments:-

Thanks for my supervisors Prof. Håkan Sundquist & Dr. Hans Åke Mattsson, for KTH, for my darling home country

(The occupied Palestine/The Bleeding Gaza)

For Your Attention

Thank You

Questions?