Public defense:

Life-Cycle Costing

ROYAL INSTITUTE OF TECHNOLOGY

Applications and Implementations in Bridge Investment and Management

Candidate:Mohammed SafiChairman:Prof. Johan Silfwerbrand, KTHOpponent:Prof. Jan-Eric Nilsson, VTIEvaluation Committee:Prof. Anne Landin, LTH
Prof. Lennart Elfgren, LTU
Prof. Hans Lind, KTHSupervisors:Prof. Håkan Sundquist
Prof. Raid Karoumi

OF TECHNOLOGY

Background

- Selection from multiple alternatives
- Conventional financial costing
- Maximize efficiency, sustainability and ensure the optimum use of taxpayers' money
- LCCA has great saving potential

F TECHNOLOGY

Aim

- Enhance bridge investment and management decisions by integrating LCCA into its procurement processes,
- Thereby helping to optimize use of taxpayers' money and improve the sustainability of bridge infrastructure.
- Develop convenient parameters and techniques for evaluating other life-cycle aspects of bridges, such as, user costs, environmental impacts and aesthetic values

Thesis Contents

ROYAL INSTITUTE OF TECHNOLOGY

• Part I: Extended Summary

- 1) Introduction
- 2) LCCA and BMSs
- 3) LCCA Applications and Obstacles
- 4) LCCA for Railway Bridges: a Case Study
- 5) BaTMan-LCC Tool
- 6) Conclusions
- Part II: Appendices
 - 1) Appended 5 Papers
 - 2) Appendix A: LCCA Tools
 - 3) Appendix B: BSMs' LCPs

Life-Cycle Costing

Applications and Implementations in Bridge Investment and Management

MOHAMMED SAFI

Doctoral Thesis in Structural Engineering and Bridges Stockholm, Sweden 2013

KTH Architecture and the Built Environment

F TECHNOLOGY

Scope

- The scope of life-cycle costing
- Mainly focuses on project-level decisions
- Some results and conclusions are object-specific
- Trafikverket's established procurement
- Records from BaTMan
- Values of general parameters, such as the discount rate and willingness-to-pay-extra for aesthetic merit and environmental impact

- The time value of money, discount rate
- Life-Cycle Costing/Life-Cycle Cost Analysis (LCCA)

- The objective of LCCA is the minimization of the bridges' LCC not only the LCM costs.
- Not necessarily the most LCC-efficient alternative is the one associated with the least LCM cost or the longest life-span.
- The most LCC-efficient option is the one associated with the lowest equivalent annual cost (EAC), i.e. annual INV and LCM costs over the proposed bridge's life-span.
- It is the function of the design standards and the qualification requirements to minimize the LCM costs of the bridges.

LCCA Applications for Bridges

ROYAL INSTITUTE OF TECHNOLOGY

Research Structure & Contributions

BaTMan & WebHybris

ROYAL INSTITUTE OF TECHNOLOGY

Division of Structural Engineering and Bridges

LCCA for

Management of Existing Bridges

Bridge Management: Paper I & III

Repair or replace a heavily deteriorated bridge?					
Road Bridges		Railway Bridges			
Paper I: Str. & Infra. Eng. J. [6-367-1] Bro över Lillån Construction Year: 1934	Paper III: TRR Journal [18-352-1] Bro över Täbyån, Höjen Construction Year: 1929	The Extended Summary [3500-2593-1]Bro över Huvudnäskanalen Construction Year: 1937			
An action is required w	An immediate action is required, CC3				
	<image/>	<image/>			

Strategies Formulation

Bridge Management: Paper IV

Repair or replace a bridge structural-member?

An action is required within a 3 years, CC2

Vårbyvägen Bridge [1-813-1] The surfacing of the bridge deck is CC 2, 3 years The bridge deck, CC 0

Parameters affecting the analysis, Sensitivity analysis:

- 1. Discount rate
- 2. The INV cost of the various strategies
- 3. User cost inclusion
- 4. Residual service life without action
- 5. Dominating structural member residual service life
- 6. Impact of the various strategies on the residual service life extension

LCCA for

Procurement of New

Bridges

Important Principals in Procurement within Public Agencies

"The Swedish Transport Administration is an authority and by law must endeavor to procure goods, services and contracts in competition"

To ensure credibility and transparency

Bridge Investment & Management from a LCCA Perspective

- The main difference lies in the procurement method/contract type
- Fixed target strategy in management but not usually fixed in investment, particularly under D-B
- The lowest bid and no consistent LCC guidelines
- Trafikverekt's goal is: 50% D-B by 2018
- A new award criterion under D-B: lowest LCC bid

Unified LCC-Efficient Benchmarks

- There are several improper ways to employ the concept of the lowest LCC bid as the contract award criterion under D-B
- The optimal way is for procurers to establish consistent LCC-efficient benchmarks and guidelines then clearly present them as core specification in the tender documents.

Case Study The Karlsnäs Bridge 2013

338 m 400 m 660 n 600 n 600 n 600 n 600 n 600 n					
Proposal No.	Description	Cross-Section Details	Outlines & Remarks		
1	One bridge, two steel boxes (Trafikverket's conceptual design)		5 Spans 4x60m + 2x40m Superstructure depth: 2.3m		
2	Two bridges, two steel I beams per bridge		5 Spans 4x60m + 2x40m Superstructure depth: Haunch beam Max. 3.2m Min. 1.8m		
3	Two bridges, one pre- stressed concrete box per bridge	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 Spans 5x50m + 2x35m Superstructure depth: Haunch beam Max. 2.8m Min. 1.6m		
4	One bridge, two pre- stressed concrete boxes.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 Spans 5x50m + 2x35m Superstructure depth: Haunch beam Max. 2.8m Min. 1.6m		
5	One bridge, one integral- cantilever concrete box		4 Spans 2x100m + 2x60m Superstructure depth: Haunch beam Max. 6.5m Min. 2.3m		

LCCA Results

Impact of varying the discount rate on the proposals' LCC

LCC added-values computed at indicated discount rates (SEK)

ROYAL INSTITUTE OF TECHNOLOGY

Structural-members' LCC addedvalues at a discount rate of 4%

To maintain contractors' freedom in D-B tendering processes and allow consideration of innovative/different designs.

		LCC sub added-value	
Bridge structural-member	Unit	Unit LCM cost (K SEK/Unit)	Fixed Cost (K SEK)
Bearings number	set	7.0	54.4
Expansion joint length	m	5.8	156.4
Edge beam length	m	1.6	108.3
Painted area	m ²	0.4	85.3
Parapets' length	m	1.0	0.0
Paved area	m ²	0.5	462.0
Drainage system points	set	32.7	0.0
Slopes and cones area	m ²	0.4	0.0
Superstructure area	m ²	0.2	0.0
Total bridge area	m ²	0.6	0.0

F TECHNOLOGY

Procurement of the Karlsnäs Bridge

- The LCC added-values and BSM's LCC added-values had been stated in the tender documents.
- 5 Contractors had participated, all of them are Proposal 3

- The contract was awarded to the lowest LCC bid, with an INV cost of 115 million SEK.
- Trafikverket has saved 57 million SEK

Paper V: Holistic Approach

ROYAL INSTITUTE OF TECHNOLOGY

Holistic Approach

- The **lowest Net Equivalent LCC bid** should be the criterion used to identify the most sustainable bridge proposal and select the D-B contractor offering it.
- The approach combines LCC Added-Value analysis with other novel techniques that make proposals' aesthetic merit and environmental impact commensurable,
- Thereby enabling agencies to establish Monetary Benchmarks concerning those aspects in an early planning phase and embed them in the tender documents as core specifications.

F TECHNOLOGY

WTP & WTPE

- In economics, the willingness-to-pay (WTP) is the maximum amount a person would be willing to pay in order to receive a good or avoid something undesired.
- Extending this concept, we propose here a novel parameter, willingness-to-pay-extra (WTPE), the maximum extra amount a person would be willing to pay to receive a good that is better than another in terms of a specific attribute.
- This is not meant to imply that designs of great aesthetic merit or more environmental friendly are necessarily more expensive than ugly substitutes, or vice versa.

Life-cycle aspects' contributions and net equivalent LCC costs of Proposals

Network-level Benefits of LCCA Considering Trafikverket's Bridges

If improper decisions are taken for 50% of Trafikverket's bridges, the agency might lose (or could otherwise save):

- Paper I, III
 - Road bridges: 75 million SEK each year
 - Railway bridges: 65 million SEK each year
- Paper IV:
 - ➢ 8 million SEK per year
- Paper II and V:
 - > 340 million SEK per year

Total of 488 million SEK each year?!

Conclusions

- OVAL INSTITUTE DF TECHNOLOGY
 - Undoubtedly, LCCA can be feasibly and fruitfully applied in both bridge management and bridge investment.
 - The most expensive bridge proposal is not necessarily the most environmentally friendly, beautiful or LCC-efficient, and vice versa. Costs, aesthetic merit and environmental concerns could be complementary in bridge design.
 - The greatest saving potential in bridge procurement could be achieved by allowing more proposals to be considered
 - D-Bs together with the lowest LCC bid affords greater opportunities to consider LCC aspects in bridge procurement than traditional contracts and the lowest bid criterion.
 - The sensitivity analysis is, NS and OL parameters are important that allows decision-makers to evaluate their confidence in the optimality of their chosen solution and estimate the consequences of their decisions.
 - The discount rate is usually has a considerable impact on the LCCA, but this does not hinder the implementation of the proposed applications and.

F TECHNOLOGY

Proposals for Further Research

- Standard LCC sub added-values
- Technically feasible bridge-designs
- LCCA curves for the various bridge locations
- Effect of repairs on the residual service life
- Network-level LCCA

Practical Implementation

ROYAL INSTITUTE OF TECHNOLOGY

BaTMan-LCC Course

ROYAL INSTITUTE OF TECHNOLOGY

Thank You!

